Ciajolo, H. R., Corradini, P. \& Pavone, V. (1976). Acta Cryst. B 33, 553-555.
Cromer, D. T. \& Mann, J. B. (1967). Report LA 3816. Los Alamos Scientific Laboratory.
Daoud. A. (1976). Thesis, Univ. of Dijon.
Daoud, A. (1977). J. Appl. Cry'st. 10, 133.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Morosin, B. (1972). Acta Cryst. B28, 2303-2305.

Rollett, J. S. (1969). Crystallographic Computing, edited by F. R. Ahmed, pp. 169-172. Copenhagen: Munksgaard.
Walter, U., Brinkmann, D., Chapuis, G. \& Arendt, H. (1978). Solid State Commun. 27, 901-905.

Waser, J. (1963). Acta Cryst. 16, 1091-1094.
Wiesner, J. R., Srivastava, R. C., Kennard, C. H. L., Divaira, M. \& Lingafelter, E. C. (1967). Acta Cryst. 23, 565-574.

Acta Crlst. (1980). B36, 2790-2793

Bis μ-(benzoato- O, O^{\prime})]-bis(benzoato)-bis μ-(2-dibutylaminoethanolato)]bis(ethanol)tricopper(II)

By Heikki Muhonen, Aarne Pajunen and Reijo Hämäläinen
Department of Inorganic Chemistry, University of Helsinki, SF-00100 Helsinki 10, Finland

(Received 21 February 1980; accepted 28 July 1980)

Abstract

Cu}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right|\), monoclinic, $P 2_{1} / c, a=8.210(9), b=29.77(5), c=$ 12.71 (1) $\AA, \beta=113.90(5)^{\circ}, V=2839$ (6) $\AA^{3}, Z=2$, $D_{m}=1 \cdot 30$ (the same as that of 1,2-dichlorobenzene by flotation), $D_{c}=1.30 \mathrm{Mg} \mathrm{m}^{3}, \mu\left(\right.$ Mo $K(r)=1.22 \mathrm{~mm}^{-1}$. The structure was solved from single-crystal diffractometer data. Three Cu atoms form a linear array with distances of $3 \cdot 211$ (6) \AA. Aminoalcohol ligands and two of the four benzoato ligands form bridges between the Cu atoms. As a bridging group the benzoato ligand is bidentately coordinated through O atoms to different Cu atoms and shows a syn-syn configuration. The other two benzoato ligands are unidentately coordinated to the terminal Cu atoms. The coordination geometries are octahedral and square planar on the central and terminal Cu atoms, respectively, the ethanol O atoms occupying the axial coordination positions of the central Cu atom. The least-squares refinement led to a final R of 0.067 . C atoms of the butyl chains and of ethanol, which have high thermal motions, could not be located satisfactorily.

Introduction. Only a few crystal structures of linear trinuclear oxygen-bridged $\mathrm{Cu}^{\text {II }}$ complexes have been described. The known $\mathrm{Cu}^{\mathrm{II}}$ complexes of 2-dibutylaminoethanol are dimeric or tetrameric (Mergehenn \& Haase, 1975, 1977; Mergehenn, Haase \& Allmann, 1975). 1,3-Diamino-2-propanol, which contains three possible donor atoms, forms, in addition to mononuclear complexes (Pajunen \& Kivekäs, 1974; Smolander, 1974; Bockelmann, Uggla, Orama \& Böök, 1975;

Kivekäs, 1977), trinuclear complexes of two types (Bertrand, Marabella \& Vanderveer, 1977; Kivekäs \& Pajunen, 1977; Kivekäs, Pajunen \& Smolander, 1977; Pajunen \& Kivekäs, 1979; Näsäkkälä, 1977a; Kivekäs, 1978). However, the arrangement of the three Cu atoms in both types is triangular. Another aminoalcohol, 3 -(N, N-diethylethylenediamine)-1-propanol |previously called N, N-diethyl- N^{\prime}-(3-hydroxypropyl)ethylenediaminel, which also contains three possible donor atoms, forms both di- and trinuclear $\mathrm{Cu}^{\mathrm{II}}$ complexes (Villa, Coghi, Manfredotti \& Guastini, 1974; Matsumoto, Nishida, Kida \& Ueda, 1976). The resulting trinuclear complex is linear. Among the iminoalcohols the condensation product of 3 -amino-1-propanol with 2,4 -pentanedione is capable of forming a linear trinuclear Cu^{11} complex acting as a quadridentate ligand (Baker \& Helm, 1975). In this paper we describe the crystal structure determination of a linear trinuclear complex formed between $\mathrm{Cu}^{\text {II }}$ benzoate and 2-dibutylaminoethanol.

Blue needle-shaped crystals of the title compound were precipitated from an ethanol solution of 2 dibutylaminoethanol and $\mathrm{Cu}^{\mathrm{II}}$ benzoate (molar ratio 2:1). Systematic absences from Weissenberg photographs ($\mathrm{Cu} K \mathrm{~K}$ radiation) showed the space group to be $P 2_{1} / c$. The intensity data were collected on a Syntex $P 2_{1}$ diffractometer. Calculation of the orientation matrix and refinement of cell parameters were carried out by the least-squares method from 9 automatically centred and indexed reflections. With the ω-scan technique, a variable scan rate from 3.0 to $30.0^{\circ} \mathrm{min}^{-1}$ and graphite-monochromated Mo $K a$ radiation ($\lambda=$

$$
\left|\mathrm{Cu}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right|
$$

$0.71069 \AA$), 3094 unique reflections with $5<2 \theta<45^{\circ}$ were collected. Of these, 1020 had $I>3 \sigma(I)$. Two standard reflections checked after every 98 intensity measurements revealed decomposition of the crystal. By the end of the data collection the standard reflection intensities had dropped by about 17%. A linear correction for the decrease of intensities was made in conjunction with Lp corrections with the aid of standard reflections. No absorption correction $[\mu$ (Mo $K(r)=1.22 \mathrm{~mm}^{-1}$] was applied.

The Cu atom positions were solved with MULTAN (Main, Woolfson, Lessinger, Germain \& Declercq, 1974) and other non-hydrogen atom positions through successive ΔF syntheses with XRAY 76 (Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1976). Location of C atoms in the butyl chains and the ethanol molecule caused difficulties similar to those encountered in the location of butyl C atoms in (2dibutylaminoethanolato)(isocyanato)copper(II) and (2-dibutylaminoethanolato)(isothiocyanato) copper (II) (Mergehenn \& Haase, 1977). After refinement (isotropic temperature factors for atoms $\mathrm{C}(3)-\mathrm{C}(10)$; otherwise anisotropic; $R=0.075$] the $\mathrm{C}-\mathrm{C}$ distances of the butyl groups were between 1.16 and $1.70 \AA$ and the $U_{\text {iso }}$ thermal parameters, except the value of $0.14 \AA^{\text {sio }}$ for $C(4)$, were in the range $0.22-0.31 \AA^{2}$. Anisotropic refinement using a large damping factor for the shifts resulted in a lower R value, but a better description of the butyl groups was not possible; the $\mathrm{C}-\mathrm{C}$ distances were still far from the normal value. The block-diagonal least-squares cycles were continued until the shifts for the non-butyl parameters were less than their estimated standard deviations. As the final difference electron density synthesis revealed no peaks greater than $0.53 \mathrm{e} \AA^{-3}$, the structure analysis was considered complete. Unit weights were used for reflections with $F_{o} \leq 119 \cdot 0$; otherwise the scheme $w=$ (119.0/F $\left.F_{o}\right)^{2}$ was employed. An anomalous-dispersion correction was applied to the Cu atoms. The final R value was 0.067.* The large estimated standard deviations of the parameters are considered to be due to the large number of unobserved reflections, which are in turn a consequence of the high thermal motion of the C atoms. The final atomic coordinates and $U_{\text {eq }}$ values (Hamilton, 1959) are given in Table 1. The $U_{\text {eq }}$ values are in the range $0.062-0.179 \AA^{2}$ for well determined atoms, but other C atoms $\mathrm{IC}(2)$ and the poorly located butyl atoms $C(3)-C(10)$, except $C(4)$ of the aminoalcohol ligand, and $\mathrm{C}(25)$ and $\mathrm{C}(26)$ of the ethanol moleculel have $U_{\text {eq }}$ values between 0.213 and $0.376 \AA^{2}$. Calculations were performed on a Univac 1108 computer.

[^0]Table 1. Final fractional coordinates and $U_{e q}\left(\times 10^{2}\right)$ values

	x	${ }^{\prime}$	z	$U_{\text {eq }}\left(\AA^{2}\right)$
$\mathrm{Cu}(1)$	$0 \cdot 1198$ (4)	-0.10334 (9)	0.0459 (3)	7.4
$\mathrm{Cu}(2)$	0.0000	0.00000	0.0000	7.0
O(1)	$0 \cdot 150$ (2)	-0.0474 (4)	-0.020 (1)	$8 \cdot 1$
O(2)	0.133 (2)	$0 \cdot 1069$ (5)	0.060 (1)	8.9
O(3)	0.213 (2)	0.0346 (5)	$0 \cdot 100$ (1)	8.5
O(4)	0.096 (2)	-0.1577 (5)	$0 \cdot 121$ (2)	$10 \cdot 8$
O(5)	-0.048 (2)	-0.1266 (5)	0.216 (2)	11.4
O(6)	-0.006 (3)	-0.0425 (6)	$0 \cdot 170$ (1)	12.8
$\mathrm{N}(1)$	0.391 (2)	-0.1081 (6)	$0 \cdot 106$ (2)	11.2
C(1)	0.328 (3)	-0.0391 (9)	-0.008 (3)	9.8
C(2)	0.439 (4)	-0.0743 (14)	0.038 (4)	23.5
C(3)	0.465 (5)	-0.1498 (14)	0.079 (4)	22.2
C(4)	0.387 (4)	-0.1846 (9)	0.025 (3)	13.7
C(5)	0.487 (6)	-0.2224 (15)	-0.008 (4)	25.4
C(6)	0.454 (5)	-0.2631 (13)	-0.026 (4)	22.6
C(7)	0.539 (7)	-0.1111 (25)	$0 \cdot 238$ (5)	37.6
C(8)	0.460 (7)	-0.1039 (16)	$0 \cdot 300$ (5)	25.4
C(9)	0.605 (6)	-0.0895 (19)	0.441 (4)	26.8
C(10)	0.735 (6)	-0.1109 (18)	0.508 (4)	25.8
C(11)	0.238 (3)	0.0782 (7)	$0 \cdot 120$ (2)	6.7
C(12)	0.418 (3)	0.0894 (7)	$0 \cdot 217$ (2)	$6 \cdot 2$
C(13)	0.528 (3)	0.0581 (9)	$0 \cdot 287$ (2)	9.3
C(14)	0.687 (4)	0.0718 (13)	$0 \cdot 376$ (2)	12.4
C(15)	0.730 (5)	$0 \cdot 1195$ (14)	0.401 (4)	17.9
C(16)	0.614 (4)	$0 \cdot 1493$ (11)	0.325 (3)	13.9
C(17)	0.449 (4)	0.1371 (9)	$0 \cdot 229$ (3)	10.7
C(18)	0.007 (3)	-0.1590 (8)	$0 \cdot 184$ (2)	9.0
C(19)	-0.016 (3)	-0.2051 (7)	$0 \cdot 225$ (2)	$7 \cdot 3$
C(20)	-0.080 (4)	-0.2092 (12)	$0 \cdot 306$ (3)	14.6
C(21)	-0.116 (4)	-0.2523 (16)	$0 \cdot 346$ (3)	17.3
C(22)	-0.072 (4)	-0.2887 (11)	$0 \cdot 293$ (3)	$15 \cdot 1$
C(23)	-0.004 (4)	-0.2889 (8)	0.209 (3)	12.7
C(24)	0.024 (3)	-0.2441 (8)	$0 \cdot 166$ (2)	10.0
C(25)	0.107 (5)	-0.0205 (14)	0.280 (4)	21.3
C(26)	-0.028 (6)	-0.0078 (14)	0.311 (4)	$22 \cdot 8$

Discussion. The unit cell contains two linear trinuclear molecules between which there are no short contacts. One molecule is shown in Fig. 1 and bond lengths and angles are listed in Table 2. Three Cu atoms are arrayed in a straight line, with separations of 3.211 (6) \AA. The middle $\mathrm{Cu}(2)$ atom lies at the centre of symmetry. The coordination around the two terminal Cu atoms is best described as a tetrahedrally distorted square-planar arrangement with the $\mathrm{Cu}-\mathrm{O}$ bond lengths ranging from 1.93 (1) to 1.97 (1) \AA and the $\mathrm{Cu}-\mathrm{N}$ bond length 2.04 (2) \AA. The deviations of atoms from the least-squares plane through $\mathrm{N}(1), \mathrm{O}(1)$, $\mathrm{O}(4)$ and $\mathrm{O}\left(2^{\mathrm{i}}\right)$ are $-0.20(2), 0.21(2), 0.19(2)$ and -0.20 (2) \AA, respectively, for the plane atoms, and 0.15 (0) \AA for $\mathrm{Cu}(1)$ not included in the calculation of the plane. The ethanol O atoms approach the bridging positions between the central and terminal Cu atoms. However, the $\mathrm{Cu}(1)-\mathrm{O}(6)$ distance of 2.85 (2) \AA is significantly longer than the $\mathrm{Cu}(2)-\mathrm{O}(6)$ bond distance of $2.52(2) \AA$, which with the centrosymmetrically related bond complete the octahedral environment around $\mathrm{Cu}(2)$ in the axial directions. The

Table 2. Bond lengths (\AA) and angles $\left({ }^{\circ}\right)$
The copper environments

$\mathrm{Cu}(1)-\mathrm{N}(1)$	$2.04(2)$	$\mathrm{Cu}(2)-\mathrm{O}(1)$	$1.96(2)$
$\mathrm{Cu}(1)-\mathrm{O}(1)$	$1.93(1)$	$\mathrm{Cu}(2)-\mathrm{O}(3)$	$1.98(1)$
$\mathrm{Cu}(1)-\mathrm{O}\left(2^{\prime}\right)$	$1.97(1)$	$\mathrm{Cu}(2)-\mathrm{O}(6)$	$2.52(2)$
$\mathrm{Cu}(1)-\mathrm{O}(4)$	$1.93(2)$		
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$84.8(7)$	$\mathrm{O}(4)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$94.0(7)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}\left(2^{\prime}\right)$	$91.9(6)$	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(3)$	$91.1(6)$
$\mathrm{O}(1)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$176.5(7)$	$\mathrm{O}(1)-\mathrm{Cu}(2)-\mathrm{O}(6)$	$89.0(7)$
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{N}(1)$	$159.8(9)$	$\mathrm{O}(3)-\mathrm{Cu}(2)-\mathrm{O}(6)$	$91.7(6)$
$\mathrm{O}\left(2^{\prime}\right)-\mathrm{Cu}(1)-\mathrm{O}(4)$	$90.3(6)$		

The aminoalcohol ligand

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.43(3)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.54(6)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.36(4)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.25(6)$
$\mathrm{C}(2)-\mathrm{N}(1)$	$1.48(5)$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1 \cdot 22(10)$
$\mathrm{C}(3)-\mathrm{N}(1)$	$1.49(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1 \cdot 75(7)$
$\mathrm{C}(7)-\mathrm{N}(1)$	$1.63(6)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1 \cdot 24(6)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.27(5)$		
$\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	$111(1)$	$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(7)$	$89(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(1)$	$114(1)$	$\mathrm{C}(7)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$129(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$	$122(1)$	$\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(4)$	$130(3)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)$	$113(3)$	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$122(3)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	$119(3)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$131(5)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$104(1)$	$\mathrm{N}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$106(4)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(3)$	$102(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$112(5)$
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(7)$	$112(3)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$128(5)$
$\mathrm{C}(3)-\mathrm{N}(1)-\mathrm{Cu}(1)$	$117(2)$		

The bidentate benzoato ligand

$\mathrm{C}(11)-\mathrm{O}(2)$	$1.23(2)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.47(6)$
$\mathrm{C}(11)-\mathrm{O}(3)$	$1.32(2)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.37(5)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.53(3)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.46(4)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.35(3)$	$\mathrm{C}(17)-\mathrm{C}(12)$	$1.44(3)$
$\mathrm{C}(13)-\mathrm{C}(14)$	$1.39(3)$		
$\mathrm{C}(11)-\mathrm{O}(2)-\mathrm{Cu}\left(1^{1}\right)$	$132(1)$	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14) 119(2)$	
$\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{Cu}(2)$	$131(1)$	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15) 122(3)$	
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{O}(3)$	$123(2)$	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16) 116(3)$	
$\mathrm{O}(2)-\mathrm{C}(11)-\mathrm{C}(12)$	$124(2)$	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17) 125(3)$	
$\mathrm{O}(3)-\mathrm{C}(11)-\mathrm{C}(12)$	$113(2)$	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(12) 113(2)$	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$123(2)$	$\mathrm{C}(17)-\mathrm{C}(12)-\mathrm{C}(13) 125(2)$	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(17)$	$112(2)$		

The unidentate benzoato ligand			
$\mathrm{C}(18)-\mathrm{O}(4)$	$1.28(4)$	$\mathrm{C}(21)-\mathrm{C}(22)$	$1.40(6)$
$\mathrm{C}(18)-\mathrm{O}(5)$	$1.20(3)$	$\mathrm{C}(22)-\mathrm{C}(23)$	$1.39(5)$
$\mathrm{C}(18)-\mathrm{C}(19)$	$1.51(3)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.50(4)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.34(5)$	$\mathrm{C}(24)-\mathrm{C}(19)$	$1.49(4)$
$\mathrm{C}(20)-\mathrm{C}(21)$	$1.45(6)$		
$\mathrm{C}(18)-\mathrm{O}(4)-\mathrm{Cu}(1)$	$122(1)$	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	$123(3)$
$\mathrm{O}(4)-\mathrm{C}(18)-\mathrm{O}(5)$	$125(2)$	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	$113(3)$
$\mathrm{O}(4)-\mathrm{C}(18)-\mathrm{C}(19)$	$115(2)$	$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{C}(23)$	$129(3)$
$\mathrm{O}(5)-\mathrm{C}(18)-\mathrm{C}(19)$	$120(3)$	$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	$117(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$119(2)$	$\mathrm{C}(23)-\mathrm{C}(24)-\mathrm{C}(19)$	$114(3)$
$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(24)$	$117(2)$	$\mathrm{C}(24)-\mathrm{C}(19)-\mathrm{C}(20)$	$124(2)$

The ethanol ligand

$\mathrm{C}(25)-\mathrm{O}(6)$	$1.47(4)$	$\mathrm{C}(25)-\mathrm{O}(6)-\mathrm{Cu}(2)$	$111(2)$
$\mathrm{C}(25)-\mathrm{C}(26)$	$1.38(7)$	$\mathrm{C}(26)-\mathrm{C}(25)-\mathrm{O}(6)$	$97(3)$

Symmetry code: (i) $-x,-y,-z$.

Fig. 1. View of the molecule showing the atomic labelling.
distance from the uncoordinated $\mathrm{O}(5)$ in the unidentate benzoato ligand to $\mathrm{Cu}(1)$ is 3.08 (2) \AA. $\mathrm{O}(1)$ and $\mathrm{O}(3)$ together with their centrosymmetric atoms form the basal plane of the octahedron around $\mathrm{Cu}(2)$. The $\mathrm{Cu}(2)-\mathrm{O}(1)$ and $\mathrm{Cu}(2)-\mathrm{O}(3)$ distances are 1.96 (2) and 1.98 (1) \AA respectively. The angle between the $\mathrm{Cu}(2)-\mathrm{O}(6)$ bond and the normal of the plane through $\mathrm{Cu}(2), \mathrm{O}(1)$ and $\mathrm{O}(3)$ is $2 \cdot 0(7)^{\circ}$.

As can be seen in Table 2 there is no significant difference in $\mathrm{Cu}-\mathrm{O}$ bond lengths within the bridges. The bridging benzoato ligand has a syn-syn configuration with $\mathrm{C}(11)-\mathrm{O}(3)-\mathrm{Cu}(2)$ and $\mathrm{C}(11)-\mathrm{O}(2)-$ $\mathrm{Cu}\left(1^{i}\right)$ angles of $131(1)$ and $132(1)^{\circ}$. The corresponding angle, $\mathrm{C}(18)-\mathrm{O}(4)-\mathrm{Cu}(1)$, for the unidentate benzoato ligand is $122(1)^{\circ}$. The dihedral angles between the phenyl ring and its carboxylic group are 11 (2) and $5(2)^{\circ}$ for the unidentate and bidentate benzoato ligands, respectively. The bridging angle $\mathrm{Cu}(1)-\mathrm{O}(1)-\mathrm{Cu}(2)$ at the aminoalcohol O atom is $111(1)^{\circ}$.

The $\mathrm{C}(1)-\mathrm{C}(2)$ bond of $1 \cdot 36$ (4) \AA in the fivemembered chelate ring is evidently too short. The larger than normal values of thermal parameters for $\mathrm{C}(2)\left(U_{11}=0.06, U_{22}=0.26, U_{33}=0.37 \AA^{2}\right)$ suggest that it possesses some positional disorder. Short C-C bonds have also been observed in tetramethylethylenediamine and 1,3-diamino-2-propanol complexes (Näsäkkälä, 1977b). $C(1)$ and $C(2)$ are both below the plane through $\mathrm{Cu}(1), \mathrm{N}(1)$ and $\mathrm{O}(1)$ at distances from the plane of 0.14 (3) and 0.37 (5) \AA, respectively. Of the butyl chains one has a conformation halfway between trans and eclipsed (120°) about the $\mathrm{C}(4)-$ $\mathrm{C}(5)$ bond $\left[154(5)^{\circ}\right]$, and the other has a gauche conformation about the $\mathrm{C}(8)-\mathrm{C}(9)$ bond $\left[55(8)^{\circ}\right]$.

$$
\left|\mathrm{Cu}_{3}\left(\mathrm{C}_{10} \mathrm{H}_{22} \mathrm{NO}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{2}\right)_{4}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)_{2}\right|
$$

References

Baker, W. A. Jr \& Helm, F. T. (1975). J. Am. Chem. Soc. 97, 2295-2296.
Bertrand, J. A., Marabella, C. P. \& Vanderveer, D. G. (1977). Inorg. Chim. Acta, 25, L69-L70.

Bockelmann, W., Uggla, R., Orama, O. \& Böök, T. (1975). Finn. Chem. Lett. pp. 41-44.

Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Kivekäs, R. (1977). Cryst. Struct. Commun. 6, 483-487.
Kivekïs, R. (1978). Finn. Chem. Lett. pp. 58-62.
Kivekäs, R. \& Pajunen, A. (1977). Cryst. Struct. Comтип. 6, 477-482.
Kivekäs, R., Pajunen, A. \& Smolander, K. (1977). Finn. Chem. Lett. pp. 256-260.
Main, P., Woolfson, M. M., Lessinger, L., Germain, G. \& Declerce, J. P. (1974). MULTAN. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Matsumoto, N., Nishida, Y., Kida, S. \& Ueda, I. (1976). Bull. Chem. Soc. Jpn, 49, 117-121.

Mergehenn, R. \& Haase, W. (1975). Z. Naturforsch. Teil B, 30, 155-158.
Mergehenn, R. \& Haase, W. (1977). Acta Cryst. B33, 2734-2739.
Mergehenn, R., Haase, W. \& Allmann, R. (1975). Acta Cryst. B31, 1847-1853.
NäSÄkKälä. M. (1977a). Ann. Acad. Sci. Fenn., Ser. A2, No. 181, pp. 35-42.
Näsäккälä, M. (1977b). Ann. Acad. Sci. Fenn., Ser. A2, No. 181, p. 44.
Pajunen, A. \& Kivekäs, R. (1974). Finn. Chem. Lett. pp. 39-42.
Pajunen, A. \& Kivekäs, R. (1979). Cryst. Struct. Commun. 8, 385-391.
Smolander, K. (1974). Finn. Chem. Lett. pp. 199-202.
Stewart, J. M., Machin, P. A., Dickinson, C., Ammon, H. L., Heck, H. \& Flack, H. (1976). The XRAY 76 system. Tech. Rep. TR-446. Computer Science Center, Univ. of Maryland, College Park, Maryland.
Villa, C., Coghi, L., Manfredotti, G. \& Guastini, C. (1974). Cryst. Struct. Commun. 3, 543-546.

[^0]: * Lists of structure factors and anisotropic thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35523 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

